4140.11 – Find the Circumference


In a given circle a central angle of 40 degrees intercepts a chord of 6 cm. What is the circumference of the circle?


Solution

B=A=70\angle B = \angle A = 70^\circ.

By the law of sines, the radius is:

xsin(70)=6sin(40)x=6(sin(70)sin(40))\begin{align*}\dfrac{x}{\sin(70^\circ)} &= \dfrac{6}{\sin(40^\circ)} \\[1em]x &= 6 \left(\dfrac{\sin(70^\circ)}{\sin(40^\circ)}\right)\end{align*}

The circumference is 2πx2 \pi x, or:

2π×6(sin(70)sin(40))12(3.14)(.94).6455.34 cm\begin{align*}2 \pi \times 6 \left(\dfrac{\sin(70^\circ)}{\sin(40^\circ)}\right) &\approx \dfrac{12 (3.14)(.94)}{.64} \\[1em]&\approx 55.34 \ \cm\end{align*}

(Note: The diameter of the circle is about 55.343.14\dfrac{55.34}{3.14}, or 17.6. The radius is about 8.8, not a whole lot more than that chord.)