4100.41 – That's Impossible!


Simplify

sin2x+sin4x+sin6x+sin8xcos2x+cos4x+cos6x+cos8x. \dfrac{\sin 2x + \sin 4x + \sin 6x + \sin 8x}{\cos 2x + \cos 4x + \cos 6x + \cos 8x}.


Solution

Answer: tan5x\tan 5x !

Use the addition formulae:

sin(a+b)=sin(a)cos(b)+sin(b)cos(a)sin(ab)=sin(a)cos(b)sin(b)cos(a)\begin{aligned}\sin(a + b) &= \sin(a) \cos(b) + \sin(b) \cos(a) \\\sin(a - b) &= \sin(a) \cos(b) - \sin(b) \cos(a)\end{aligned}

Adding these gives

sin(ab)+sin(a+b)=2sin(a)cos(b) \sin(a - b) + \sin(a + b) = 2 \sin(a) cos(b)

Similar identities for cosine yield,

cos(ab)+cos(a+b)=2cos(a)cos(b) \cos(a - b) + \cos(a + b) = 2 \cos(a) cos(b)

These lead to

sin(2x)+sin(8x)=2sin(5x)cos(3x)sin(4x)+sin(6x)=2sin(5x)cos(x)\begin{aligned}\sin(2x) + \sin(8x) &= 2 \sin(5x) \cos(3x) \\\sin(4x) + \sin(6x) &= 2 \sin(5x) \cos(x)\end{aligned}

where the first uses a=5 and b=3a = 5 \text{ and } b = 3 and the second uses a=5 and b=1a = 5 \text{ and } b = 1.

Similarly,

cos(2x)+cos(8x)=2cos(5x)cos(3x)cos(4x)+cos(6x)=2cos(5x)cos(x)\begin{aligned}\cos(2x) + \cos(8x) &= 2 \cos(5x) \cos(3x) \\\cos(4x) + \cos(6x) &= 2 \cos(5x) \cos(x)\end{aligned}

Combining all of these results,

sin(2x)+sin(4x)+sin(6x)+sin(8x)cos(2x)+cos(4x)+cos(6x)+cos(8x)=2sin(5x)cos(3x)+2sin(5x)cos(x)2cos(5x)cos(3x)+2cos(5x)cos(x)=sin(5x)cos(5x)2cos(3x)+2cos(x)2cos(3x)+2cos(x)=tan(5x)\begin{aligned}\dfrac{\sin(2x) + \sin(4x) + \sin(6x) + \sin(8x)}{\cos(2x) + \cos(4x) + \cos(6x) + \cos(8x)} &= \dfrac{2 \sin(5x)\cos(3x) + 2 \sin(5x) \cos(x)}{2 \cos(5x)\cos(3x) + 2 \cos(5x)\cos(x)} \\&= \dfrac{\sin(5x)}{\cos(5x)} \cdot \dfrac{2 \cos(3x) + 2 \cos(x)}{2 \cos(3x) + 2 \cos(x)} \\&= \tan(5x)\end{aligned}

(with thanks to Alexandra Du).