Solution
Answer: tan5x !
Use the addition formulae:
sin(a+b)sin(a−b)=sin(a)cos(b)+sin(b)cos(a)=sin(a)cos(b)−sin(b)cos(a)
Adding these gives
sin(a−b)+sin(a+b)=2sin(a)cos(b)
Similar identities for cosine yield,
cos(a−b)+cos(a+b)=2cos(a)cos(b)
These lead to
sin(2x)+sin(8x)sin(4x)+sin(6x)=2sin(5x)cos(3x)=2sin(5x)cos(x)
where the first uses a=5 and b=3 and the second uses a=5 and b=1.
Similarly,
cos(2x)+cos(8x)cos(4x)+cos(6x)=2cos(5x)cos(3x)=2cos(5x)cos(x)
Combining all of these results,
cos(2x)+cos(4x)+cos(6x)+cos(8x)sin(2x)+sin(4x)+sin(6x)+sin(8x)=2cos(5x)cos(3x)+2cos(5x)cos(x)2sin(5x)cos(3x)+2sin(5x)cos(x)=cos(5x)sin(5x)⋅2cos(3x)+2cos(x)2cos(3x)+2cos(x)=tan(5x)
(with thanks to Alexandra Du).