4100.22 – Cosine of Three


Given that cos(30)=32\cos(30^\circ) = \dfrac{\sqrt{3}}{2} and that cos(36)=(1+5)4\cos(36^\circ) = \dfrac{(1 + \sqrt{5})}{4}, find (using formulas for the cosines of the sums and differences of angles) an exact expression for cos(3)\cos(3^\circ). Your expression may use radicals as they are exact.


Solution

We will need sin(30)\sin(30^\circ) and sin(36)\sin(36^\circ) as well as the given cosines. These follow from the Pythagorean formula: cos2(θ)+sin2(θ)=1\cos^2(\theta) + \sin^2(\theta) = 1. Using this we find that

sin(30)=1cos2(30)=134=12sin(36)=1cos2(36)=11+5+2516=1662516=10254.\begin{aligned}\sin(30^\circ) &= \sqrt{1 - \cos^2(30^\circ)} = \sqrt{1 - \dfrac{3}{4}} = \dfrac{1}{2} \\[1em]\sin(36^\circ) &= \sqrt{1 - \cos^2(36^\circ)} = \sqrt{1 - \dfrac{1 + 5 + 2 \sqrt{5}}{16}} \\&= \sqrt{\dfrac{16 - 6 - 2 \sqrt{5}}{16}} = \dfrac{\sqrt{10 - 2 \sqrt{5}}}{4}.\end{aligned}

After some thought and a bit of scratch work, we find that

cos(3)=cos(62)=cos(36302)cos(3630)=cos(36)cos(30)sin(36)sin(30)=1+54321025412=3+5+10258cos(3)=cos(62)=1+cos(6)2=8+3+15+102516=8+3+15+10254\begin{aligned}\cos(3^\circ) &= \cos\left(\dfrac{6^\circ}{2}\right) = \cos \left( \dfrac{36^\circ - 30^\circ}{2} \right) \\[1em]\cos(36^\circ - 30^\circ) &= \cos(36^\circ)\cos(30^\circ) - \sin(36^\circ) \sin(30^\circ) \\[0.5em]&= \dfrac{1+\sqrt{5}}{4} \cdot \dfrac{\sqrt{3}}{2} - \dfrac{\sqrt{10 - 2 \sqrt{5}}}{4} \cdot \dfrac{1}{2} \\[1em]&= \dfrac{\sqrt{3} + \sqrt{5} + \sqrt{10 - 2 \sqrt{5}}}{8} \\[1em]\cos(3^\circ) &= \cos\left(\dfrac{6^\circ}{2}\right) = \sqrt{ \dfrac{1 + \cos(6^\circ)}{2}} \\[1em]&= \sqrt{ \dfrac{8 + \sqrt{3} + \sqrt{15} + \sqrt{10 - 2 \sqrt{5}}}{16}} \\[1em]&= \dfrac{ \sqrt{8 + \sqrt{3} + \sqrt{15} + \sqrt{10 - 2 \sqrt{5}}}}{4}\end{aligned}

Wow. Complicated!