Given that cos ( 3 0 ∘ ) = 3 2 \cos(30^\circ) = \dfrac{\sqrt{3}}{2} cos ( 3 0 ∘ ) = 2 3 and that cos ( 3 6 ∘ ) = ( 1 + 5 ) 4 \cos(36^\circ) = \dfrac{(1 + \sqrt{5})}{4} cos ( 3 6 ∘ ) = 4 ( 1 + 5 ) , find (using formulas for the cosines of the sums and differences of angles) an exact expression for cos ( 3 ∘ ) \cos(3^\circ) cos ( 3 ∘ ) . Your expression may use radicals as they are exact.
Solution We will need sin ( 3 0 ∘ ) \sin(30^\circ) sin ( 3 0 ∘ ) and sin ( 3 6 ∘ ) \sin(36^\circ) sin ( 3 6 ∘ ) as well as the given cosines. These follow from the Pythagorean formula: cos 2 ( θ ) + sin 2 ( θ ) = 1 \cos^2(\theta) + \sin^2(\theta) = 1 cos 2 ( θ ) + sin 2 ( θ ) = 1 . Using this we find that
sin ( 3 0 ∘ ) = 1 − cos 2 ( 3 0 ∘ ) = 1 − 3 4 = 1 2 sin ( 3 6 ∘ ) = 1 − cos 2 ( 3 6 ∘ ) = 1 − 1 + 5 + 2 5 16 = 16 − 6 − 2 5 16 = 10 − 2 5 4 . \begin{aligned}\sin(30^\circ) &= \sqrt{1 - \cos^2(30^\circ)} = \sqrt{1 - \dfrac{3}{4}} = \dfrac{1}{2} \\[1em]\sin(36^\circ) &= \sqrt{1 - \cos^2(36^\circ)} = \sqrt{1 - \dfrac{1 + 5 + 2 \sqrt{5}}{16}} \\&= \sqrt{\dfrac{16 - 6 - 2 \sqrt{5}}{16}} = \dfrac{\sqrt{10 - 2 \sqrt{5}}}{4}.\end{aligned} sin ( 3 0 ∘ ) sin ( 3 6 ∘ ) = 1 − cos 2 ( 3 0 ∘ ) = 1 − 4 3 = 2 1 = 1 − cos 2 ( 3 6 ∘ ) = 1 − 16 1 + 5 + 2 5 = 16 16 − 6 − 2 5 = 4 10 − 2 5 .
After some thought and a bit of scratch work, we find that
cos ( 3 ∘ ) = cos ( 6 ∘ 2 ) = cos ( 3 6 ∘ − 3 0 ∘ 2 ) cos ( 3 6 ∘ − 3 0 ∘ ) = cos ( 3 6 ∘ ) cos ( 3 0 ∘ ) − sin ( 3 6 ∘ ) sin ( 3 0 ∘ ) = 1 + 5 4 ⋅ 3 2 − 10 − 2 5 4 ⋅ 1 2 = 3 + 5 + 10 − 2 5 8 cos ( 3 ∘ ) = cos ( 6 ∘ 2 ) = 1 + cos ( 6 ∘ ) 2 = 8 + 3 + 15 + 10 − 2 5 16 = 8 + 3 + 15 + 10 − 2 5 4 \begin{aligned}\cos(3^\circ) &= \cos\left(\dfrac{6^\circ}{2}\right) = \cos \left( \dfrac{36^\circ - 30^\circ}{2} \right) \\[1em]\cos(36^\circ - 30^\circ) &= \cos(36^\circ)\cos(30^\circ) - \sin(36^\circ) \sin(30^\circ) \\[0.5em]&= \dfrac{1+\sqrt{5}}{4} \cdot \dfrac{\sqrt{3}}{2} - \dfrac{\sqrt{10 - 2 \sqrt{5}}}{4} \cdot \dfrac{1}{2} \\[1em]&= \dfrac{\sqrt{3} + \sqrt{5} + \sqrt{10 - 2 \sqrt{5}}}{8} \\[1em]\cos(3^\circ) &= \cos\left(\dfrac{6^\circ}{2}\right) = \sqrt{ \dfrac{1 + \cos(6^\circ)}{2}} \\[1em]&= \sqrt{ \dfrac{8 + \sqrt{3} + \sqrt{15} + \sqrt{10 - 2 \sqrt{5}}}{16}} \\[1em]&= \dfrac{ \sqrt{8 + \sqrt{3} + \sqrt{15} + \sqrt{10 - 2 \sqrt{5}}}}{4}\end{aligned} cos ( 3 ∘ ) cos ( 3 6 ∘ − 3 0 ∘ ) cos ( 3 ∘ ) = cos ( 2 6 ∘ ) = cos ( 2 3 6 ∘ − 3 0 ∘ ) = cos ( 3 6 ∘ ) cos ( 3 0 ∘ ) − sin ( 3 6 ∘ ) sin ( 3 0 ∘ ) = 4 1 + 5 ⋅ 2 3 − 4 10 − 2 5 ⋅ 2 1 = 8 3 + 5 + 10 − 2 5 = cos ( 2 6 ∘ ) = 2 1 + cos ( 6 ∘ ) = 16 8 + 3 + 15 + 10 − 2 5 = 4 8 + 3 + 15 + 10 − 2 5
Wow. Complicated!