4100.11 – Compound Fraction: Trig


Simplify this compound fraction:

sinA tanA secA  cotA  cosAcscA\dfrac{\qquad \sin A\qquad }{\dfrac{\quad \ \tan A\quad \ }{\dfrac{\quad \sec A\quad }{\dfrac{\ \ \cot A \ \ }{\dfrac{\cos A}{\csc A}}}}}


Solution

We start at the bottom.

cosAcscA=cosA1sinA=cosAsinAcotAcosAsinA=cosAsinA1cosAsinA=1sin2AsecA1sin2A=secAsin2A=1cosAsin2A=sin2AcosAtanAsin2AcosA=sinAcosAcosAsin2A=1sinAsinA1sinA=sin2A\begin{align*}\dfrac{\cos A}{\csc A} &= \dfrac{\quad \cos A \quad }{\dfrac{1}{\sin A}} \\[2em]&= \cos A \cdot \sin A \\ \\\dfrac{\cot A}{\cos A \cdot \sin A} &= \dfrac{\cos A}{\sin A} \cdot \dfrac{1}{\cos A \cdot \sin A} \\[1em]&= \dfrac{1}{{\sin^2}A} \\ \\\dfrac{\quad \sec A \quad }{\dfrac{1}{\sin^2 A}} &= \sec A \cdot{\sin^2 A} \\[1em]&= \dfrac{1}{\cos A} \cdot {\sin^2} A \\[1em]&= \dfrac{{\sin^2} A} {\cos A} \\ \\\dfrac{\quad \tan A \quad}{\dfrac{{\sin^2} A} {\cos A}} &= \dfrac{\sin A}{\cos A} \cdot \dfrac{\cos A}{{\sin^2} A} \\[2em]&= \dfrac{1}{\sin A} \\[1em] \\\dfrac{\quad \sin A \quad}{\dfrac{1}{\sin A}} &= {\sin^2 A}\end{align*}

After all that!