4050.12 – Area External to Two Circles


A circle of radius rr is externally tangent to a circle of radius 2r2r, as in the figure. Segments ADAD and AEAE are drawn tangent to the circle with center at BB. Find the area of the shaded region.

Tags:

Solution

Let A\mathcal{A} be the shaded area. Then

A=2(ΔADBIII)\mathcal{A} = 2(\Delta ADB - \text{I} - \text{II})

For the area of ΔADB\Delta ADB, we need the length ADAD:

AD=(3r)2(2r)2=r5AD = \sqrt{(3r)^2 - (2r)^2} = r\sqrt{5}

ΔADB=r5(2r)2=r25\Delta ADB = \dfrac{r\sqrt{5} \cdot (2r)}{2} = r^2\sqrt{5}

For the area of sectors I\text{I} and II\text{II} we need the angle Θ\Theta:

Θ=arcsin(2r3r)=arcsin(23)\Theta = \arcsin\left(\dfrac{2r}{3r}\right) = \arcsin\left(\dfrac{2}{3}\right)

I=Θ360πr2, II=90Θ360π(2r)2I = \dfrac{\Theta}{360} \pi r^2, \ II = \dfrac{90-\Theta}{360} \pi (2r)^2

Putting this all together:

A=r2(25+π(arcsin(23)360+90arcsin(23)90))\mathcal{A} = r^2 \left( 2 \sqrt{5} + \pi \left(\dfrac{\arcsin{\left(\dfrac{2}{3}\right)}}{360} + \dfrac{90 - \arcsin{\left(\dfrac{2}{3}\right)}}{90}\right) \right)