Solution Let A \mathcal{A} A be the shaded area. Then
A = 2 ( Δ A D B − I − II ) \mathcal{A} = 2(\Delta ADB - \text{I} - \text{II}) A = 2 ( Δ A D B − I − II )
For the area of Δ A D B \Delta ADB Δ A D B , we need the length A D AD A D :
A D = ( 3 r ) 2 − ( 2 r ) 2 = r 5 AD = \sqrt{(3r)^2 - (2r)^2} = r\sqrt{5} A D = ( 3 r ) 2 − ( 2 r ) 2 = r 5
Δ A D B = r 5 ⋅ ( 2 r ) 2 = r 2 5 \Delta ADB = \dfrac{r\sqrt{5} \cdot (2r)}{2} = r^2\sqrt{5} Δ A D B = 2 r 5 ⋅ ( 2 r ) = r 2 5
For the area of sectors I \text{I} I and II \text{II} II we need the angle Θ \Theta Θ :
Θ = arcsin ( 2 r 3 r ) = arcsin ( 2 3 ) \Theta = \arcsin\left(\dfrac{2r}{3r}\right) = \arcsin\left(\dfrac{2}{3}\right) Θ = arcsin ( 3 r 2 r ) = arcsin ( 3 2 )
I = Θ 360 π r 2 , I I = 90 − Θ 360 π ( 2 r ) 2 I = \dfrac{\Theta}{360} \pi r^2, \ II = \dfrac{90-\Theta}{360} \pi (2r)^2 I = 360 Θ π r 2 , II = 360 90 − Θ π ( 2 r ) 2
Putting this all together:
A = r 2 ( 2 5 + π ( arcsin ( 2 3 ) 360 + 90 − arcsin ( 2 3 ) 90 ) ) \mathcal{A} = r^2 \left( 2 \sqrt{5} + \pi \left(\dfrac{\arcsin{\left(\dfrac{2}{3}\right)}}{360} + \dfrac{90 - \arcsin{\left(\dfrac{2}{3}\right)}}{90}\right) \right) A = r 2 2 5 + π 360 arcsin ( 3 2 ) + 90 90 − arcsin ( 3 2 )