4050.11 – Angles in a Special Triangle


It so happens that the triangle whose sides are 4, 5, and 6 has a special property: its largest angle is twice its smallest angle. Make calculations that support this assertion.

Tags:

Solution

Let A\angle A be the largest angle; C\angle C the smallest.

First Solution. We can use the law of cosines—twice.

62=42+52245cosAcosA=624252245=0.125A=arccos(0.125)82.82°\begin{aligned}6^2 &= 4^2 + 5^2 - 2 \cdot 4 \cdot 5 \cos A \\\cos A &= \dfrac{6^2 - 4^2 - 5^2}{-2 \cdot 4 \cdot 5} = 0.125 \\\angle A &= \arccos(0.125) \approx 82.82°\end{aligned}

42=52+62256cosCcosC=425262256=0.75C=arccos(0.75)41.41°\begin{aligned}4^2 &= 5^2 + 6^2 - 2 \cdot 5 \cdot 6 \cos C \\\cos C &= \dfrac{4^2 - 5^2 - 6^2}{-2 \cdot 5 \cdot 6} = 0.75 \\\angle C &= \arccos(0.75) \approx 41.41°\end{aligned}

Voila!

Second Solution. First we find the area, A\mathcal{A}, via Heron's formula. Let ss be the semi-perimeter of the triangle, i.e., s=15/2s = 15/2. Then,

A=s(sa)(sb)(sc),=152325272=1574.\begin{aligned}\mathcal{A} &= \sqrt{s (s - a)(s - b)(s - c)}, \\&= \sqrt{\dfrac{15}{2} \cdot \dfrac{3}{2} \cdot \dfrac{5}{2} \cdot \dfrac{7}{2}} = \dfrac{15 \sqrt{7}}{4}.\end{aligned}

Now we can find the height, hh, as in figure below. Since

1574=A=bh2=5h2\dfrac{15 \sqrt{7}}{4} = \mathcal{A} = \dfrac{bh}{2} = \dfrac{5h}{2}

it follows that h=372h = \dfrac{3 \sqrt 7}{2}. Now,

sinA=h/4=378A82.82°\begin{aligned}\sin A &= h/4 = \dfrac{3 \sqrt 7}{8} \\\angle A &\approx 82.82° \\\end{aligned}

sinC=h6=3712C41.41°\begin{aligned}\sin C &= \dfrac{h}{6} = \dfrac{3 \sqrt 7}{12} \\\angle C &\approx 41.41°\end{aligned}

Hey! These solutions are a good advertisement for the law of cosines, don't you agree?