3580.11 – Trapezoid


Let ABCDABCD be a trapezoid with the length of base ABAB twice that of base DCDC, and let EE be the point of intersection of the diagonals. If the length of diagonal ACAC is 11, what is the length of segment ECEC? The picture below is not to scale.

  1. 113\dfrac{11}{3}

  2. 154\dfrac{15}{4}

  3. 44

  4. 72\dfrac{7}{2}

  5. 33


Solution

Referring to the figure, part (I), we know AC =11AC = 11; we want ECEC which we call xx. Extend ADAD and BCBC to meet at FF, forming AFB\triangle AFB. Because FDC FAB\triangle FDC \sim \triangle FAB and AB =2DCAB = 2DC, we know FA =2FDFA = 2FD and FD = DAFD = DA. Also, FC=CBFC = CB. Thus ACAC and BDBD are medians, intersecting each other in the ratio 2:12:1. So y + x =11y + x = 11y =2xy = 2x, 2x + x =112x + x = 11, and x =11/3.x = 11/3.

The answer is (a).

Alternatively, consider triangles ABE\triangle ABE and CDE\triangle CDE as in the figure, part (II). Since CDCD and ABAB are parallel, ABE CDE\angle ABE \cong \angle CDE, and EABECD\angle EAB \cong \angle ECD. Lines ACAC and BDBD intersect at point EE, so DECBEA\angle DEC \cong \angle BEA.

Since the angles of the two triangles are the same measure, we can say ABECDE\triangle ABE \sim \triangle CDE, which means that yx=ABCD\dfrac{y}{x} = \dfrac{AB}{CD}. We note that y=11xy=11 - x and AB =2CDAB = 2CD, so that ABCD=2\dfrac{AB}{CD} = 2 to rewrite the equation as 11xx=2\dfrac{11 – x}{x} = 2. Solving for xx, we get, again, that x=113x = \dfrac{11}{3}.

The answer, once again, is (a).