3460.11 – Split That Triangle!


A vertical line divides the triangle with vertices (0,0),(1,1)(0,0), (1,1) and (9,1)(9,1) in the xyxy-plane into two regions of equal area. What is the equation of the line?

  1. x =2.5x = 2.5

  2. x=3.0x = 3.0

  3. x=3.5x = 3.5

  4. x=4.0x = 4.0

  5. x=4.5x = 4.5


Solution

Please refer to the diagram below.

The area of ΔOBD\Delta\mathsf{OBD} is split in half by line CA\mathsf{CA}. Since ΔOBD\Delta\mathsf{OBD} has base BD = 8\mathsf{BD} = 8 and altitude EO = 1\mathsf{EO} = 1, its area is

A(OBD)=(8×1)/2=4. \mathcal{A}(\triangle \mathsf{OBD}) = (8 \times 1)/2 = 4.

This means

A(ABC) =2= a(CA)/2.\mathcal{A}(\triangle \mathsf{ABC}) = 2 = a(\mathsf{CA})/2.

Now CAOE\mathsf{CA} \parallel \mathsf{OE}, so triangles ΔBAC\Delta\mathsf{BAC} and ΔBOE\Delta\mathsf{BOE} are similar and CA/OE=BC/BE\mathsf{CA/OE = BC/BE}, i.e., CA/1= a/9\mathsf{CA/1 = a/9}. Now,

A(ABC) = a(CA)/2= a2/18. \mathcal{A}(\triangle \mathsf{ABC}) = a(CA)/2 = a^2/18.

But this area is also 2. Therefore, a2/18 = 2a^2/18 = 2 and so a =6a = 6.

Thus line CA\mathsf{CA} intersects the xx-axis at x=3x=3, and that's the equation of line CA\mathsf{CA}x =3x = 3.

The answer is (b).

What a good problem!