3420.71 – Hard Triangle Area


If GRAWGRAW is a square, and the triangle GMR\triangle GMR is equilateral, what is the area of triangle RAC\triangle RAC?


Solution

If the side of the square is aa and xx is the height of the RAC\triangle RAC, then the area of RAC=ax2\triangle RAC = \dfrac{ax}{2}.

Now, AD=xAD = x and RD=x3RD = x\sqrt3, so a=x+x3a = x + x\sqrt 3 and x=a3+1x = \dfrac{a}{\sqrt3 +1}. This leads to

Area(RAC)=a2a3+1=a22(3+1)=a2(31)2(3+1)(31)=a2(31)2(31)=a2(31)4\begin{align*}\text{Area}(\triangle\text{RAC}) &= \dfrac{a}{2}\cdot\dfrac{a}{\sqrt3 +1} \\[1em]&= \dfrac{a^2}{2(\sqrt 3 +1)} \\[1em]&= \dfrac{a^2(\sqrt 3 - 1)}{2(\sqrt 3+1)(\sqrt 3-1)} \\[1em]&= \dfrac{a^2(\sqrt 3-1)}{2(3-1)} \\[1em]&= \dfrac{a^2(\sqrt 3-1)}{4}\end{align*}

And now, how about the area of GCM\triangle GCM?