3420.51 – Area of a Regular Pentagon


Let a regular pentagon have side length 10. What is its area?


Solution

Referring to the diagram,

h5=tan(54°)h=5tan(54)6.88area of ABC=1210h34.41area of pentagon =5×area of ABC172.05\begin{aligned}\dfrac{h}{5} &= \tan(54°) \\h &= 5 \tan(54) \approx 6.88 \\\text{area of } \triangle ABC &= \dfrac{1}{2} 10h \approx 34.41 \\\text{area of pentagon } &= 5 \times \text{area of } \triangle ABC \approx 172.05\end{aligned}