3420.29 – Midline Triangle


In a random triangle ABC, D is the midpoint of AB; E is the midpoint of BD; and F is the midpoint of BC.

Suppose the area of \triangleABC is 9696. Then the area of \triangleAEF is:

  1. 1616
  2. 2424
  3. 3232
  4. 3636
  5. 4848

Solution

The figure described in the problem is drawn below. Note that if you halve the base of a triangle and don't change the altitude, you halve the area. Therefore,

ABC=96ABF=48 (base being halved: BC)ADF=24 (base being halved: AB)BDF=24 (base being halved: AB)DEF=12 (base being halved: BD)AEF=ADF+DEF=24+12=36.\begin{aligned} \triangle\text{ABC} &= 96 \\ \triangle\text{ABF} &= 48 \ (\text{base being halved: BC)}\\ \triangle\text{ADF} &= 24 \ (\text{base being halved: AB)}\\ \triangle\text{BDF} &= 24 \ (\text{base being halved: AB)}\\ \triangle\text{DEF} &= 12 \ (\text{base being halved: BD)}\\ \triangle\text{AEF} &= \triangle\text{ADF} + \triangle\text{DEF} \\ &= 24 + 12 = 36. \end{aligned}

3420_29_solution_31ed70968e.png