In parallelogram ABCD, M and N are midpoints of sides AD and BC, respectively. CM and DN intersect at point O. DN intersects AB at P, and CM intersects AB at Q. If the area of parallelogram ABCD is 24 cm2, find the area of triangle △QPO.
Solution
Master plan:
△QPO=□ABNM+△MNO+△QAM+△BPN.
Here goes:
ABNM△MNO△QAM=21ABCD=21△MNC, (half the base MC, same altitude)=21(21MNCD)=21(21(21ABCD))=81ABCD,=△CDM=21(MNCD)=21(21ABCD)=41ABCD.
Likewise, △PBN=41ABCD. So (see the top)
△QPO=21ABCD+81ABCD+41ABCD+41ABCD=89ABCD=89⋅24=27 sq cm.