3360.11 – Mystery Trapezoid


In the figure, ABAB is parallel to CDCD, and the measure of D\angle D is twice that of angle BB. What is ABAB in terms of aa and bb?

  1. ab+2b\dfrac{a}{b} + 2b

  2. 3b2+3a4\dfrac{3b}{2} + \dfrac{3a}{4}

  3. 2ab2a - b

  4. 4ba24b - \dfrac{a}{2}

  5. a+ba + b


Solution

Draw DEDE to bisect D\angle D. Then D1=D2=B\angle D1 = \angle D2 = \angle B.

Now B+C180\angle B + \angle C - 180, so D2+C=180\angle D2 + \angle C = 180 and EDBC ED \parallel BC. So BCDEBCDE is a parallelogram and EB=bEB = b. Next,

E1=BE1=D1AED is isoscelesAE=a.\begin{aligned}\angle E1 = \angle B &\leadsto \angle E1 = \angle D1 \\&\leadsto \triangle AED \text{ is isosceles} \\&\leadsto AE = a.\end{aligned}

Finally, AB=AE+EB=a+bAB = AE + EB = a + b. The answer is e.