2740.38 – Find k (logarithms)


If logx(10)+logx210=10log_x(10) + log_{x^2} 10 = 10, and if x=10kx = 10^k, find k.


Solution

Start with x=10k10=x(1k)x = 10^k \rightarrow 10 = x^{\small \left(\dfrac{1}{k}\right)}. Then logx(10)=1klog_x(10) = \dfrac{1}{k}.

For logx2(10)log_{x^2}(10) Observe that (x2)(12k)=x(1k)=10(x^2)^{\small \left(\dfrac{1}{2k}\right)} = x^{\small \left(\dfrac{1}{k}\right)} = 10, so logx2(10)=12klog_{x^2}(10) = \dfrac{1}{2k}.

So logx(10)+logx2(10)=1k+12k=10log_x(10) + log_{x^2}(10) = \dfrac{1}{k} + \dfrac {1}{2k} = 10, as the problem tells us. Therefore:

22k+12k=1032k=102k=310k=320\begin{align*}\dfrac{2}{2k} + \dfrac{1}{2k} &= 10 \\[1em]\dfrac{3}{2k} &= 10 \\[1em]2k &= \dfrac{3}{10} \\[1em]k &= \dfrac{3}{20}\end{align*}