If logx(10)+logx210=10, and if x=10k, find k.
Solution
Start with x=10k→10=x(k1). Then logx(10)=k1.
For logx2(10) Observe that (x2)(2k1)=x(k1)=10, so logx2(10)=2k1.
So logx(10)+logx2(10)=k1+2k1=10, as the problem tells us. Therefore:
2k2+2k12k32kk=10=10=103=203