2702.11 – Add'Em Up


Evaluate the sum:

1222+3242+5262++19921^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \cdots + 199^2


Solution

Pair 'em up:

12+(3222)+(5242)++(19921982)=1+5+9+13++397\begin{align*}&\quad \, \, 1^2 + (3^2- 2^2) + (5^2- 4^2) + \cdots + (199^2 - 198^2) \\&= 1 + 5 + 9 + 13 + \cdots + 397\end{align*}

This is an arithmetic progression with 1st term 1, difference 4, and last term 397. The sum of these progressions is

(# of terms)×(average of the first and last terms)=992(1+397)=19701\begin{align*}&\quad \, \, \text{(\# of terms)} \\&\times \text{(average of the first and last terms)} \\\hline \\[-1em]&= \dfrac{99}{2} (1 + 397) \\[1em]&= 19701\end{align*}