2580.11 – Big f(x), Find f(6)


If f(n)f(n) is a function such that f(1)=f(2)=f(3)=1f(1) = f(2) = f(3) = 1, and is defined as

f(n+1)=f(n)f(n1)+1f(n2) for n>3,f(n+1)=\dfrac{f(n)\cdot f(n-1)+1}{f(n-2)} \text{ for } n > 3,

then f(6)=f(6) =

  1. 2

  2. 3

  3. 7

  4. 11

  5. 26


Solution

We will compute f(4),f(5)f(4), f(5), and f(6)f(6):

f(4)=f(3+1)=f(3)f(2)+1f(1)=11+11=2f(4)=f(3+1)=\dfrac{f(3)\cdot f(2)+1}{f(1)} =\dfrac{1\cdot1 + 1}{1} = 2

f(5)=f(4+1)=f(4)f(3)+1f(2)=21+11=3f(5)=f(4+1)=\dfrac{f(4)\cdot f(3)+1}{f(2)} =\dfrac{2\cdot1 + 1}{1} = 3

f(6)=f(5+1)=f(5)f4)+1f(3)=32+11=7f(6)=f(5+1)=\dfrac{f(5)\cdot f4)+1}{f(3)} =\dfrac{3\cdot2 + 1}{1} = 7

So the answer is (c).