Let xk=(−1)k for any positive integer k. Let f(n)=n(x1+x2+...+xn), where n is a positive integer.
Give the range of this function.
0
n1 (where n is any positive integer)
0 and n−1 (where n is any odd positive integer)
0 and n1 (where n is any positive integer)
1 and n1 (where n is any odd positive integer).
Solution
Let's compute:
xkx1x2x3x4=(−1)k=−1=1=−1=1.
So, xn=−1 if n is odd and xn=1 if n is even. Thus x1+x2+...+xn=0 if n is even, −1 if n is odd.
So,
f(1)f(2)f(3)f(4)f(5)=1−1=−1=10=0=3−1=40=0=5−1
The answer is (c).