2410.33 – Battling Percentages


In a brick-shaped solid, if the length and width are each increased by pp percent, then by what percent qq must the height be decreased to maintain the same volume?

  1. 1001002(100+p)2100 - \dfrac{100^2}{(100+p)^2}

  2. 100100(100+p)2100 - \dfrac{100}{(100+p)^2}

  3. 100100100+p100 - \dfrac{100}{100+p}

  4. pp

  5. 1001003(100+p)2100 - \dfrac{100^3}{(100+p)^2}


Solution

If length, width and height are ll, ww and hh, then the new dimensions are l(100+p100)l \left(\dfrac{100+p}{100}\right), w(100+p100)w \left(\dfrac{100+p}{100}\right), and h(100q100)h \left(\dfrac{100-q}{100}\right). Those fractions are imposing, so instead of the percentages pp and qq, let's work with the fractions x=p100x = \dfrac{p}{100} and y=q100y = \dfrac{q}{100}. In these terms the new dimensions are l(1+x)l (1+x), w(1+x)w (1+x), and h(1y)h (1-y).

The volume of the solid is supposed to be unchanged. That is,

l(1+x)w(1+x)h(1y)=lwh.l (1+x) w (1+x) h (1-y) = lwh.

The original dimensions cancel and we are left with the equation,

(1+x)2(1y)=1,(1+x)^2(1-y) = 1,

in which yy is the unknown. Solving is easy enough:

1y=1(1+x)2y=11(1+x)2\begin{aligned}1-y &= \dfrac{1}{(1+x)^2} \\y &= 1 - \dfrac{1}{(1+x)^2}\end{aligned}

Putting back the pp's and qq's is not so nice:

q=100y=100(11(1+x)2)=100(11(1+p100)2)=100(11002(100+p)2)=1001003(100+p)2\begin{aligned}q &= 100 y \\&= 100 \left(1 - \dfrac{1}{(1+x)^2}\right) \\[1em]&= 100 \left(1 - \dfrac{1}{\left(1+\dfrac{p}{100}\right)^2}\right) \\[2em]&= 100 \left(1 - \dfrac{100^2}{(100 + p)^2}\right) \\[1em]&= 100 - \dfrac{100^3}{(100 + p)^2}\end{aligned}

The answer, believe it or not, is (e).