2211.21 – Product with an Absolute Value


If xx is a real number, then for what values of xx is (1x)(1+ x)(1 - |x|)(1 + x) a positive number?

  1. x<1x < 1

  2. x=1x = 1

  3. x>1x > 1

  4. x<1x < -1

  5. x<1x < -1 or 1<x<1-1 < x < 1


Solution

The quantity (1x)(1+ x)(1 - |x|)(1 + x) is positive if both factors are positive OR if both factors are negative. We must consider both cases.

  • Case 1: 1x>01 - |x| > 0 and 1+x>01 + x > 0. This means 1>x1 > |x| and x>1x > -1, or 1<x<1-1 < x < 1 and x>1x > -1. The conclusion in this case is 1<x<1-1 < x < 1.

  • Case 2: 1x<01 - |x| < 0 and 1+x<01 + x < 0. This means x>1|x| > 1 and x<1x < -1 , which yields (x>1x > 1 or x<1x < -1) and x<1x < -1. The conclusion in this case is x<1x < -1.

Together the two cases yield x<1x < -1 or 1<x<1-1 < x < 1. The answer is (e).