2150.41 – Adding x to Numerator and Denominator


Let a quantity xx be added to both the numerator and the denominator of a fraction ab\dfrac{a}{b}, where neither aa nor bb is 00. Let the new value of the fraction be cd\dfrac{c}{d}. Find the value of xx in terms of aa, bb, cc, and dd.


Solution

Cross multiply, then solve for x:

a+xb+x=cdd(a + x)= c(b + x)ad+dx=bc+cxdxcx=bcadx(d  c)= bc  adx=bcaddc\begin{aligned}\dfrac{a + x}{b + x} &= \dfrac{c}{d} \\[1em]d(a + x) &= c(b + x) \\[1em]a d + d x &= b c + c x \\[1em]d x - c x &= b c - a d \\[1em]x(d - c) &= bc - ad \\[1em]x &= \dfrac{bc - ad}{d - c}\end{aligned}

Afterthought: the denominator of that fraction might be zero. Do we need to specify something to keep that from happening? Poke around and see what you find.