2122.41 – Perfect Square?


Show that the product (10x217x+3)(5x2+9x2)(2x2+x6)(10x^2-17x+3) \cdot (5x^2+9x-2) \cdot (2x^2+x-6) is a perfect square, and write its square root in factored form.


Solution

(10x217x+3)(5x2+9x2)(2x2+x6)=(5x1)(2x3)(5x1)(x+2)(2x3)(x+2)=((5x1)(2x3)(x+2))2\begin{align*}&\quad \, \, (10x^2-17x+3) \cdot (5x^2+9x-2) \cdot (2x^2+x-6) \\&= (5x-1)(2x-3) \cdot (5x-1)(x+2) \cdot (2x-3)(x+2) \\&=((5x-1)(2x-3)(x+2))^2\end{align*}

It's interesting to give x a value and see how it all works out. Notice in particular what happens if x=0x = 0.