If a=b, a3−b3=19x3, and a−b=x, which of the following conclusions is correct?
a=3x
a=3x or a=−2x
a=−3x or a=2x
a=3x or a=2x
a=2x
Solution
Given a=b, a3−b3=19x3, and a−b=x, we need to find a in terms of x because that is the form of all the given answers. Therefore, b must go, and so we note that b=a−x. We next take a deep breath.
a3−b319x30=(a−b)(a2+ab+b2)=x(a2+a(a−x)+(a−x)2)=x(a2+a2−ax+a2−2ax+x2)=x(3a2−3ax+x2)=3a2x−3ax2+x3=3a2x−3ax2−18x3=3x(a2−ax−6x2)=3x(a−3x)(a+2x)
So a =3x or a =−2x. This is answer (b). Whew.