2100.52 – Rational Expressions, Laws of Exponents


Suppose

64x14x1=2562x\dfrac{64^{x-1}}{4^{x-1}} = 256^{2x}

Then, what is x?

  1. 23\dfrac{-2}{3}

  2. 13\dfrac{-1}{3}

  3. 00

  4. 14\dfrac{1}{4}

  5. 38\dfrac{3}{8}


Solution

Given

64x14x1=2562x\dfrac{64^{x-1}}{4^{x-1}} = 256^{2x}

Then, since 64=4364 = 4^3 and 256=44256 = 4^4,

64x1=2562x4x143(x1)=48x+(x1)43x3=49x13x3=9x16x=2x=13\begin{aligned}64^{x-1} &= 256^{2x} \cdot 4^{x - 1} \\4^{3(x - 1)} &= 4^{8x + (x - 1)} \\4^{3x - 3} &= 4^{9x - 1} \\3x - 3 &= 9x - 1 \\-6x &= 2 \\x &= \dfrac{-1}{3} \end{aligned}

The answer is b.