Express 8x8^x8x in terms of aaa, given that a=2(x+2)a = 2^{(x+2)}a=2(x+2). Solution a=2(x+2)a3=2(x+2)×3=2(3x+6)\begin{align*}a &= 2^{(x+2)} \\a^3 &= 2^{(x+2) \times 3} \\&=2^{(3x+6)}\end{align*}aa3=2(x+2)=2(x+2)×3=2(3x+6)So,a326=2(3x+6)26=2(3x+6−6)=23x=(23)x=8x\begin{align*}\dfrac{a^3}{2^6} &= \dfrac{2^{(3x+6)}}{2^6} \\[1em]&= 2^{(3x+6-6)} \\[0.5em]&= 2^{3x} \\[0.5em]&= (2^3)^x \\[0.5em]&= 8^x\end{align*}26a3=262(3x+6)=2(3x+6−6)=23x=(23)x=8xTherefore 8x=a3648^x = \dfrac{a^3}{64}8x=64a3.