2100.35 – Fiddling with Exponents


Express 8x8^x in terms of aa, given that a=2(x+2)a = 2^{(x+2)}.


Solution

a=2(x+2)a3=2(x+2)×3=2(3x+6)\begin{align*}a &= 2^{(x+2)} \\a^3 &= 2^{(x+2) \times 3} \\&=2^{(3x+6)}\end{align*}

So,

a326=2(3x+6)26=2(3x+66)=23x=(23)x=8x\begin{align*}\dfrac{a^3}{2^6} &= \dfrac{2^{(3x+6)}}{2^6} \\[1em]&= 2^{(3x+6-6)} \\[0.5em]&= 2^{3x} \\[0.5em]&= (2^3)^x \\[0.5em]&= 8^x\end{align*}

Therefore 8x=a3648^x = \dfrac{a^3}{64}.