You are to find expressions for each whole number from 1 through 20, using in each case exactly four 4’s, plus any mathematical symbols you like: parentheses, plus signs, etc.
Sample: 1 = ( 4 + 4 ) ( 4 + 4 ) 1 = \dfrac{(4 + 4)}{(4 + 4)} 1 = ( 4 + 4 ) ( 4 + 4 )
Solution There are many possibilities. Here is one:
1 = ( 4 + 4 ) ( 4 + 4 ) 2 = ( 4 ∗ 4 ) ( 4 + 4 ) 3 = ( 4 + 4 + 4 ) 4 4 = 4 + 4 + 4 + 4 5 = ( 4 ∗ 4 + 4 ) 4 6 = ( 4 + 4 ) 4 + 4 7 = 4 + 4 + 4 4 8 = 4 + ( 4 ∗ 4 4 ) 9 = 4 + 4 + 4 4 10 = 4 + 4 ∗ 4 4 11 = 4 + 4 + 4 − ⌊ 4 ⌋ 12 = 4 ∗ 4 − 4 4 13 = 4 + 4 + 4 + ⌊ 4 ⌋ 14 = 4 ∗ 4 − 4 4 15 = 4 ∗ 4 − 4 4 16 = 4 ∗ 4 ∗ ( 4 4 ) 17 = 4 ∗ 4 + 4 4 18 = 4 ∗ 4 + 4 4 19 = 4 ∗ 4 + 4 + ⌊ 4 ⌋ 20 = 4 ∗ ( 4 + 4 4 ) \begin{aligned}1 &= \dfrac{(4 + 4)}{(4 + 4)} \\[1em]2 &= \dfrac{(4 * 4)}{(4 + 4)} \\[1em]3 &= \dfrac{(4 + 4 + 4)}{4} \\[1em]4 &= \sqrt{4 + 4 + 4 + 4} \\[1em]5 &= \dfrac{(4 * 4 + 4)}{4} \\[1em]6 &= \dfrac{(4 + 4)}{4} + 4 \\[1em]7 &= 4 + \sqrt 4 + \dfrac{4}{4} \\[1em]8 &= 4 + \left(4 * \dfrac{4}{4}\right) \\[1em]9 &= 4 + 4 + \dfrac{4}{4} \\[1em]10 &= \sqrt 4 + 4 * \dfrac{4}{\sqrt{4}} \\[1em]11 &= 4 + 4 + 4 - \left\lfloor\sqrt{\sqrt{4}}\right\rfloor \\[1em]12 &= 4 * 4 - \sqrt{4} \sqrt{4} \\[1em]13 &= 4 + 4 + 4 + \left\lfloor\sqrt{\sqrt{4}}\right\rfloor \\[1em]14 &= 4 * 4 - \dfrac{4}{\sqrt{4}} \\[1em]15 &= 4 * 4 - \dfrac{4}{4} \\[1em]16 &= 4 * 4 * \left(\dfrac{4}{4}\right) \\[1em]17 &= 4 * 4 + \dfrac{4}{4} \\[1em]18 &= 4 * 4 + \dfrac{4}{\sqrt{4}} \\[1em]19 &= 4 * 4 + \sqrt{4} + \left\lfloor\sqrt{\sqrt{4}}\right\rfloor \\[1em]20 &= 4 * \left(4 + \dfrac{4}{4}\right)\end{aligned} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 = ( 4 + 4 ) ( 4 + 4 ) = ( 4 + 4 ) ( 4 ∗ 4 ) = 4 ( 4 + 4 + 4 ) = 4 + 4 + 4 + 4 = 4 ( 4 ∗ 4 + 4 ) = 4 ( 4 + 4 ) + 4 = 4 + 4 + 4 4 = 4 + ( 4 ∗ 4 4 ) = 4 + 4 + 4 4 = 4 + 4 ∗ 4 4 = 4 + 4 + 4 − ⌊ 4 ⌋ = 4 ∗ 4 − 4 4 = 4 + 4 + 4 + ⌊ 4 ⌋ = 4 ∗ 4 − 4 4 = 4 ∗ 4 − 4 4 = 4 ∗ 4 ∗ ( 4 4 ) = 4 ∗ 4 + 4 4 = 4 ∗ 4 + 4 4 = 4 ∗ 4 + 4 + ⌊ 4 ⌋ = 4 ∗ ( 4 + 4 4 )
Note: ⌊ x ⌋ \left\lfloor x \right\rfloor ⌊ x ⌋ is the greatest integer function. That is ⌊ x ⌋ \left\lfloor x \right\rfloor ⌊ x ⌋ is the greatest integer less than or equal to x x x . For example, and most notoriously: ⌊ 4 ⌋ = ⌊ 2 ⌋ = ⌊ 1.4 ⌋ = 1 \left\lfloor\sqrt{\sqrt{4}}\right\rfloor = \left\lfloor\sqrt{2}\right\rfloor= \left\lfloor 1.4 \right\rfloor = 1 ⌊ 4 ⌋ = ⌊ 2 ⌋ = ⌊ 1.4 ⌋ = 1 , a handy way to make a 1 1 1 out of just one 4 4 4 .