1730.32 – Squares and Cubes in a Pattern


Here is the pattern:

13=120223=321233=623243=1026253=15210263=212152\begin{aligned}1^3 &= 1^2 - 0^2 \\2^3 &= 3^2 - 1^2 \\3^3 &= 6^2 - 3^2 \\4^3 &= 10^2 - 6^2 \\5^3 &= 15^2 - 10^2 \\6^3 &= 21^2 - 15^2\end{aligned}

Something is going on here. What would the equation be for 1003100^3? What is the statement for n3n^3? What about a proof?


Solution

First let us recognize that the strange numbers in the pattern, that is the numbers 1, 3, 6, 10 . . . are the sum of the first so many integers and that there is a formula for these, so-called triangular numbers, TnT_n:

T1=1=1=122T2=3=1+2=232T3=6=1+2+3=342T4=10=1+2+3+4=452T5=15=1+2++5=562T6=21=1+2++6=672\begin{aligned}T_1 &= 1 = 1 &= \dfrac{1 \cdot 2}{2} \\[1em]T_2 &= 3 = 1 + 2 &= \dfrac{2 \cdot 3}{2} \\[1em]T_3 &= 6 = 1 + 2 + 3 &= \dfrac{3 \cdot 4}{2} \\[1em]T_4 &= 10 = 1+2+3+4 &= \dfrac{4 \cdot 5}{2} \\[1em]T_5 &= 15 = 1+2+ \ldots +5 &= \dfrac{5 \cdot 6}{2} \\[1em]T_6 &= 21 = 1 +2 + \ldots +6 &= \dfrac{6 \cdot 7}{2}\end{aligned}

If we take 535^3 as an example, we have

53=152102=T52T42=(T5+T4)(T5T4)=(15+10)(1510)=255=53\begin{aligned}5^3 &= 15^2 - 10^2 \\&= T_5^2 - T_4^2 \\&= (T_5 + T_4)(T_5 - T_4) \\&= (15 + 10)(15 - 10) \\&= 25 \cdot5 = 5^3\end{aligned}

In general, we would like to have

n3=Tn2Tn12=(Tn+Tn1)(TnTn1)n^3 = T_n^2 - T_n-1^2 = (T_n + T_n-1)(T_n - T_n-1)

We can recall that Tn=1+2++n=n(n+1)/2.T_n = 1 + 2 + \ldots + n = n (n + 1)/2.

Thus

Tn+Tn1=n(n+1)2+(n1)n2=n2+n+(n2n)2=2n22=n2\begin{aligned}T_n + T_{n-1} &= \dfrac{n (n+1)}{2} + \dfrac{(n - 1) n}{2} \\&= \dfrac{n^2 + n + (n^2 - n)}{2} \\&= \dfrac{2 n^2}{2} = n^2\end{aligned}

Similarly,

TnTn1=n(n+1)2(n1)n2=n2+n(n2n)2=2n2=n\begin{aligned}T_n - T_{n-1} &= \dfrac{n (n+1)}{2} - \dfrac{(n - 1) n}{2} \\&= \dfrac{n^2 + n - (n^2 - n)}{2} \\&= \dfrac{2 n}{2} = n\end{aligned}

So it works!

Tn2Tn12=(TnTn1)(Tn+Tn1)=nn2=n3.\begin{aligned}T_n^2 - T_{n-1}^2 &= (T_n - T_{n-1})(T_n + T_{n-1}) \\&= n \cdot n^2 \\&= n^3.\end{aligned}

Voila!