1470.53 – Dripping Faucet


The faucet in a kitchen sink drips one drop every two seconds. If it takes 575 drops of water to fill a 100mL bottle, how many liters of water are being wasted in a week? How many are being wasted in a thirty-day month? How many in a normal year? Give all your answers to the nearest liter.

Tags:

Solution

First, note that it takes 5,750 drops of water to make one liter.

To find how many liters are being wasted in a given amount of time, it helps to use dimensional analysis.

For one week:

7 days1 week×24 hours1 day×60 minutes1 hour× 60 seconds1 minute×1 drop2 seconds×1 liter5,750 drops 53 liters1week\begin{align*}&\dfrac{7 \ \days}{1 \ \week} \times \dfrac{24 \ \hours}{1 \ \day} \times \dfrac{60 \ \minutes}{1 \ \hour}\\[1em]\times \ & \dfrac{60 \ \seconds}{1 \ \minute} \times \dfrac{1 \text{ drop}}{2 \ \seconds} \times \dfrac{1 \ \liter}{5,750 \text{ drops}} \\[0.5em]\hline \\[-1em]\approx \ & \dfrac{53 \ \liters}{1 \week}\end{align*}

For one thirty-day month:

30 days1 month×24 hours1 day×60 minutes1 hour× 60 seconds1 minute×1 drop2 seconds×1 liter5,750 drops 225 liters1 month\begin{align*}&\dfrac{30 \ \days}{1 \ \month} \times \dfrac{24 \ \hours}{1 \ \day} \times \dfrac{60 \ \minutes}{1 \ \hour}\\[1em]\times \ & \dfrac{60 \ \seconds}{1 \ \minute} \times \dfrac{1 \text{ drop}}{2 \ \seconds} \times \dfrac{1 \ \liter}{5,750 \text{ drops}} \\[0.5em]\hline \\[-1em]\approx \ & \dfrac{225 \ \liters}{1 \ \month}\end{align*}

For one normal year:

365 days1 year×24 hours1 day×60 minutes1 hour× 60 seconds1 minute×1 drop2 seconds×1 liter5,750 drops 2742 liters1 year\begin{align*}&\dfrac{365 \ \days}{1 \ \year} \times \dfrac{24 \ \hours}{1 \ \day} \times \dfrac{60 \ \minutes}{1 \ \hour}\\[1em]\times \ & \dfrac{60 \ \seconds}{1 \ \minute} \times \dfrac{1 \text{ drop}}{2 \ \seconds} \times \dfrac{1 \ \liter}{5,750 \text{ drops}} \\[0.5em]\hline \\[-1em]\approx \ & \dfrac{2742\ \liters}{1 \ \year}\end{align*}

Maybe it’s time to call a plumber.

(Note: is it necessary to start from scratch each time? How can you use one result to get the next one?)