1410.12 – A Number Pattern


Find more examples of this pattern:

525=42+4727=62+6\begin{aligned}5^2 - 5 &= 4^2 + 4 \\7^2 - 7 &= 6^2 + 6\end{aligned}


Solution

There are many, many examples. Here is one plus an analysis of why it works:

10210=92+910(101)=9(9+1)109=910\begin{aligned}10^2 - 10 &= 9^2 + 9 \\10(10-1) &= 9(9 + 1) \\10 \cdot 9 &= 9 \cdot 10\end{aligned}

In algebra (that is, using formulas) we have

n2n=n22n+1+n1=(n1)2+(n1)\begin{align*}n^2 - n &= n^2 - 2n + 1 + n - 1 \\&= (n-1)^2 + (n-1)\end{align*}

Since this is true for all nn we can create examples at will. For example with n=49n = 49 we find that

49249=240149=2352482+48=2304+48=2352\begin{aligned}49^2 - 49 &= 2401 - 49 = 2352 \\48^2 + 48 &= 2304 + 48 = 2352\end{aligned}

Zowie!