3420.29 – Midline Triangle


In a random triangle ABC\triangle ABC, DD is the midpoint of ABAB, EE is the midpoint of BDBD, and FF is the midpoint of BCBC.

Suppose the area of ABC\triangle ABC is 9696. Then the area of AEF\triangle AEF is:

  1. 1616

  2. 2424

  3. 3232

  4. 3636

  5. 4848


Solution

The figure described in the problem is drawn above. Note that if you halve the base of a triangle and don't change the altitude, you halve the area. Therefore,

ABC=96ABF=48 (base being halved: BC)ADF=24 (base being halved: AB)BDF=24 (base being halved: AB)DEF=12 (base being halved: BD)AEF=ADF+DEF=24+12=36\begin{aligned}\triangle\text{ABC} &= 96 \\\triangle\text{ABF} &= 48 \ (\text{base being halved: BC)}\\\triangle\text{ADF} &= 24 \ (\text{base being halved: AB)}\\\triangle\text{BDF} &= 24 \ (\text{base being halved: AB)}\\\triangle\text{DEF} &= 12 \ (\text{base being halved: BD)}\\\triangle\text{AEF} &= \triangle\text{ADF} + \triangle\text{DEF} \\&= 24 + 12 \\&= 36\end{aligned}